
ULRICH IDEALS IN THE RING k[[t5, t11]]
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Abstract. The Ulrich ideals in the semigroup rings k[[t5, t11]] and k[[t5, t6, t9]] are
determined, by describing the normal forms of systems of generators, where k[[t]] denotes
the formal power series ring over a field k.

1. Introduction

This research is one of the attempts of determining the Ulrich ideals in the semigroup

rings of numerical semigroups, and the present one is a succession of [1], where the authors

started a systematic study of the ubiquity of Ulrich ideals inside semigroup rings. They

succeeded in providing the normal forms of systems of generators of the Ulrich ideals,

particularly in the case where the multiplicity of the semigroups is at most three. They

pinpointed also the set Xk[[t4,t13]] of Ulrich ideals in the ring k[[H]] = k[[t4, t13]], the

semigroup ring of the numerical semigroup H = ⟨4, 13⟩ generated by 4, 13, where k[[t]]

denotes the formal power series ring over a field k. The accurate arguments in [1] have

brought a new point of view, not only to the study of Ulrich ideals but also to further

problems about numerical semigroups. The present purpose is, based on the technique

developed by [1], to explore mainly the case of k[[t5, t11]], which has been predicted in [1]

but left for another occasion.

2. Brief review on Ulrich ideals and preliminaries

The notion of Ulrich ideal is one of the modifications of stable maximal ideal introduced

in 1971 by J. Lipman [7]. The present modification was formulated by [4] in 2014.

Let (A,m) be a Cohen-Macaulay local ring with dimA = d ≥ 0, and I an m-primary

ideal of A. We throughout assume that I contains a parameter ideal Q of A as a reduction.

Definition 2.1. ([4, Definition 1.1]) We say that I is an Ulrich ideal of A, if the following

conditions are satisfied.

(1) I ̸= Q, I2 = QI, and

(2) I/I2 is a free A/I-module.

Notice that Condition (1) of Definition 2.1 is satisfied if and only if the associated graded

ring grI(A) =
⊕

n≥0 I
n/In+1 is a Cohen-Macaulay ring with a(grI(A)) = 1 − d, where

a(grI(A)) denotes the a-invariant of grI(A) ([6, Definition 3.1.4]). Therefore, Condition
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(1) is independent of the choice of reductions Q of I. When I = m, Condition (2) is

automatically satisfied, while Condition (1) is equivalent to saying that A is not regular

but of minimal multiplicity.

Let I be an m-primary ideal of A and assume that I2 = QI. Then, since Q/QI is a

free A/I-module of rank d, the exact sequence

0 → Q/QI → I/I2 → I/Q→ 0

of A/I-modules shows that I/I2 is a free A/I-module if and only if so is I/Q. Therefore,

provided I is minimally generated by d+1 elements, the latter condition is equivalent to

saying that I/Q ∼= A/I as an A/I-module. If I is an Ulrich ideal, then by [4, 5] we get

the equality

(µA(I)− d) · r(A/I) = r(A),

where µA(I) (resp. r(∗)) denotes the number of generators of I (resp. the Cohen-Macaulay

type). Therefore, d + 1 ≤ µA(I) ≤ d + r(A), so that when A is a Gorenstein ring, every

Ulrich ideal I is generated by d + 1 elements (if it exists). As is shown in [4, 5], all

the Ulrich ideals with µA(I) = d + 1 possess finite G-dimension, and their minimal free

resolutions have a restricted form, so that they are eventually periodic of period one.

For instance, assume that dimA = 1 and let I be an Ulrich ideal of A. Therefore, I is

an m-primary ideal of A, and I2 = aI for some a ∈ I, such that I ̸= (a) but I/(a) is a

free A/I-module. Assume that I is minimally generated by two elements, say I = (a, b)

with b ∈ I, and write b2 = ac for some c ∈ I. We then have, since I/(a) ∼= A/I, that

(a) :A b = I, and the minimal free resolution of I has the following form

· · · −→ A⊕2

−b −c
a b


−→ A⊕2

−b −c
a b


−→ A⊕2

(
a b

)
−→ I −→ 0

([4, Example 7.3]). In particular, I is a totally reflexive A-module, that is I is a reflexive

A-module, ExtpA(I, A) = (0), and ExtpA(HomA(I, A), A) = (0) for all p > 0 ([3, Proposition

4.6]). We clearly have that I = J , once SyziA(I)
∼= SyziA(J) for some i ≥ 0, provided I, J

are Ulrich ideals of A.

It seems that behind the behavior of Ulrich ideals and their existence also, there is

hidden some ample information about the structure of the base rings. For example, if A

has finite Cohen-Macaulay representation type, then A contains only finitely many Ulrich

ideals ([4]). In a one-dimensional non-Gorenstein almost Gorenstein local ring, the only

possible Ulrich ideal is the maximal ideal ([5, Theorem 2.14]). In [3] the authors explored

the ubiquity of Ulrich ideals in a 2-AGL rings (one of the generalizations of Gorenstein

local rings of dimension one), and showed that the existence of two-generated Ulrich ideals

provides a rather strong restriction on the structure of the base local rings ([3, Theorem

4.7]). The motivation for our research comes from these observations.

Let us summarize a few results which we later need in this paper. Throughout, let

k be a field and let V = k[[t]] denote the formal power series ring over k. Let A be a

k-subalgebra of V . Then, following [2], we say that A is a core of V , if tcV ⊆ A for

some c ≫ 0. The semigroup rings k[[H]] = k[[tai | 1 ≤ i ≤ ℓ]] of numerical semigroups

H = ⟨a1, a2, . . . , aℓ⟩ are typical examples of cores of V . If I is an Ulrich ideal in the
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semigroup ring A of a numerical semigroup, the blowing-up ring AI =
⋃

n≥0[I
n : In] of A

with respect to I is again a core of V , which is, however, not necessarily a semigroup ring

(see, e.g., Proposition 5.3). We would like to refer the readers to [8] for general results on

numerical semigroups.

Let I be a fixed two-generated Ulrich ideal of a core A of V . Let f, g ∈ I such that

I = (f, g) and I2 = fI. We consider the A-subalgebra

AI =
⋃
n≥0

[In : In]

of V , where the colon

In : In = {x ∈ Q(A) | xIn ⊆ In}
is considered inside the quotient field of A. We then have AI = I : I since In+1 = fnI for

all n ≥ 0, so that AI = f−1I = A+ A· g
f
. We set

a = o(f), b = o(g), and c = c(H)

where c(H) denotes the conductor of H. Notice that a is an invariant of I, since IV =

fV = taV . We set v(A) = {o(f) | f ∈ A}, where o(∗) denotes the valuation (or the order

function) of V . With this setting and notation, we have the following, which plays a key

role throughout this paper.

Lemma 2.2 ([1, Lemma 2.3, Theorem 2.7]). Let A be a core of V = k[[t]] and let

H = v(A). Let I be an Ulrich ideal in A and assume that I is minimally generated by

two elements. Then one can choose elements f, g ∈ I so that the following conditions are

satisfied, where a = o(f), b = o(g), c = c(H), and c = A : V .

(1) I = (f, g) and I2 = fI.

(2) a, b ∈ H and 0 < a < b < a+ c.

(3) b− a ̸∈ H, 2b− a ∈ H, and a = 2 · ℓA(A/I).
(4) tc−(b−a)V ∩ A ⊆ I and c ⊆ I.

(5) If a ≥ c, then e(A) = 2 and I = c.

3. The case where H = ⟨5, 6, 9⟩

Let us begin with the following.

Let H = ⟨5, 6, 9⟩
0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

...
...

...
...

...

and set A = k[[t5, t6, t9]]. Then, because A is a Gorenstein ring, every possible Ulrich

ideal must be two-generated and we have the following.
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Proposition 3.1. XA = {(t6 +αt10, t9 + βt10) | α, β ∈ k, 2β = 0}. The elements α, β ∈ k

in the expression I = (t6 + αt10, t9 + βt10) are uniquely determined for each I ∈ XA.

Proof. Let I ∈ XA and choose elements f, g ∈ I so that all the conditions stated in Lemma

2.2 are satisfied. We maintain the notation given in Lemma 2.2. After some routine works,

similarly as in the proof of [1, Example 2.8, Proposition 4.9 (1), (2)] we attain the unique

possible pair (a, b) = (6, 9). We write

f = t6 + α1t
9 + α2t

10 + α3t
11 + α4t

12 + ρ, g = t9 + β1t
10 + β2t

11 + β3t
12 + η

where αi, βj ∈ k and ρ, η ∈ c = t14V . We then have after some elementary transform on

f, g that

I = (f, g) = (f, g) + c = (t6 + α2t
10, t9 + β1t

10) + (t14, t15, t16, t17, t18)

(see the proof of [1, Corollary 3.8]), which shows

I = (t6 + α2t
10, t9 + β1t

10),

since µA(I) = 2 and t9 + β1t
10 ̸∈ (t6 + α2t

10, t14, t15, t16, t17, t18). Thus we may assume

f = t6 + αt10, g = t9 + βt10

where α, β ∈ k. Let ξ = g
f
. We then have

ξ = t3 + βt4 − αt7 − αβt8 + α2t11 + · · · .

Consequently

g2

f
= gξ = t12 + 2βt13 + η

where η ∈ V with o(η) ≥ 14. Since g2

f
∈ I ⊆ A but 13 ̸∈ H, this implies 2β = 0.

Conversely, let f = t6 + αt10, g = t9 + βt10 where α, β ∈ k such that 2β = 0, and set

I = (f, g). We must show that I ∈ XA. Let L = v(I). Then, 14, 15, 16, 17, 18 ∈ L, so

that c = t14V ⊆ I. Hence, the vanishing f ≡ 0, g ≡ 0 mod I forces the k-space A/I to be

spanned by the images of the monomials 1, t5, t10, whence ℓA(A/I) ≤ 3. Therefore, the

epimorphism

φ : A/I → I/(f), φ(1 mod I) = g mod I

of A-modules is an isomorphism, since ℓA(A/(f)) = 6. Thus, A/I ∼= I/(f) as an A-

module and the images of 1, t5, t10 form a k-basis of A/I. It now suffices to show I2 = fI.

To see it, notice that t12 ∈ I, since t6f = t12 + αt16 ∈ I. Therefore

g2

f
≡ t12 mod t14V,

so that g2

f
∈ I, because t14V ⊆ I and t12 ∈ I. Hence, I2 = fI, and I ∈ XA.

Let us check the second assertion. Let f = t6+αt10, g = t9+βt10 and f1 = t6+α1t
10, g1 =

t9 + β1t
10 where α, β, α1, β1 ∈ k, and assume that I = (f, g) = (f1, g1). Then, considering

f − f1 and g − g1, we get (α − α1)t
10, (β − β1)t

10 ∈ I. Therefore, α = α1 and β = β1,

because the images of 1, t5, t10 form a k-basis of A/I as we showed above. □
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4. The case where H = ⟨5, 11⟩ and (a, b) = (10, 27)

Let H = ⟨5, 11⟩

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

35 36 37 38 39

40 41 42 43 44

...
...

...
...

...

and set A = k[[t5, t11]]. We now want to determine all the Ulrich ideals in A. Let I ∈ XA

and choose elements f, g ∈ I so that the conditions stated in Lemma 2.2 are satisfied.

We maintain the notation given in Lemma 2.2. After some routine works, similarly as in

the proof of [1, Example 2.8, Proposition 4.9 (1), (2)], we are able to restrict the possible

pairs (a, b) within

(10, 16), (10, 27), (20, 26),

and eventually see the following.

Proposition 4.1. (a, b) ̸= (10, 16).

Proof. Assume (a, b) = (10, 16) and consider the table:

a 10
b− a 6
b 16

2b− a 22
40− (b− a) 34

We set J = (t35, t36, t37, t38). Then, J ⊆ I by Lemma 2.2 (4), since 40 − (b − a) = 34.

Therefore, some elementary transform on f, g similar to the one given in the proof of [1,

Corollary 3.8] implies

I = (f, g) + J = (t10 + α1t
11 + α2t

22 + α3t
33, t16 + β1t

22 + β2t
33) + J

where αi, βj ∈ k. Hence, we may assume that

f = t10 + α1t
11 + α2t

22 + α3t
33, g = t16 + β1t

22 + β2t
33,
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because µA(I) = 2 and 6 ̸∈ H. Let us write

g2

f
= t22 + γ1t

25 + γ2t
26 + γ3t

27 + γ4t
30 + γ5t

31 + γ6t
32 + γ7t

33 + δ

where γi ∈ k and δ ∈ J . Then, since o(f) = 10 and o(g) = 16, we readily have

t22 + γt33 = t22(1 + γt11) ∈ I

where γ = γ7. Therefore, t
22 ∈ I, so that

I = (f, g, t22) = (t10 + α1t
11, t16, t22) = (t10 + α1t

11, t16),

since t16 ̸∈ (t10 + α1t
11, t22). This enables us, from the beginning, to assume that f =

t10 + α1t
11 and g = t16. Since t22 ∈ I, we then have

t22 = (t10 + α1t
11)φ+ t16ψ

with φ, ψ ∈ A. Because 6, 12 /∈ H, the element α1t
11φ is the only term that could possibly

appear in the right-hand side for t22. Hence we get φ11α1 = 1 (here φ11 ∈ k denotes the

coefficient of t11 in φ). Consequently, α1 ̸= 0, and therefore, the equation

t32 = (t10 + α1t
11)t22 − α1t

33

implies t33 ∈ fI + (g2) = fI, whence 23 ∈ H. This is impossible. □
Proposition 4.2. (1) If (a, b) = (10, 27), then

I = (t10 + α1t
11 + α2t

16 + α3t
22, t27)

for some αi ∈ k such that α1 ̸= 0.

(2) If (a, b) = (20, 26), then

I = (t20 + α1t
21 + α2t

22 + α3t
27 + α4t

33, t26 + β1t
27 + β2t

33)

and t32 + εt33 ∈ I for some αi, βj, ε ∈ k.

Proof. (1) Since 40− (b− a) = 23, we get (t30, t31, t32, t33, t44) ⊆ I, and we can assume

f = t10 + α1t
11 + α2t

16 + α3t
22 and g = t27

where αi ∈ k. To show α1 ̸= 0, we assume α1 = 0 and seek a contradiction. Since t33 ∈ I,

we write

t33 = (t10 + α2t
16 + α3t

22)φ+ t27ψ

with φ, ψ ∈ A. Then φ5 = 0, where φi ∈ k is the coefficient of ti in φ. Since 6, 17, 23 /∈ H,

we see that the t33 term can be appeared only in α3t
22φ, whence φ11 ̸= 0. This makes

a contradiction, because the t21 term arising from t10φ cannot be cancelled out by any

terms in α2t
16φ, α3t

22φ, and t27ψ. Hence α1 ̸= 0.

(2) We have (t35, t36, t37, t38, t44) ⊆ I, since c− (b− a) = 34, while

t32 + ε1t
33 + ε2t

35 + ε3t
36 + ε4t

37 + ε5t
38 + ρ ∈ I

for some εi ∈ k and ρ ∈ t40V , since 2b − a = 32. Therefore, t32 + εt33 ∈ I for ε = ε1,

whence we can choose f, g so that

f = t20 + α1t
21 + α2t

22 + α3t
27 + α4t

33 and g = t26 + β1t
27 + β2t

33

where αi, βj ∈ k. □
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Proposition 4.2 (1) gives the normal form of systems of generators of Ulrich ideals I

possessing (a, b) = (10, 27), as the following result shows.

Theorem 4.3. Let f = t10 + α1t
11 + α2t

16 + α3t
22 and g = t27 with αi ∈ k such that

α1 ̸= 0. Then I = (f, g) is an Ulrich ideal of A. The elements {αi}i=1,2,3 in the expression

of I are uniquely determined by I.

Proof. We set I = (f, g) and L = v(I). Then, 40, 41, 42, 43, 44 ∈ L. In fact, since

10, 27 ∈ L, we readily have 40, 41, 42, 43 ∈ L. Since t32 = t5g, t38 = t11g, and

t22f = t32 + α1t
33 + α2t

38 + α3t
44,

we get t33+ α3

α1
t44 ∈ I (remember α1 ̸= 0), so that 33 ∈ L. Therefore, 40, 41, 42, 43, 44 ∈ L,

which implies that c = t40V ⊆ I. Therefore, t33 ∈ I. Since g2

f
∈ c (notice that o( g

2

f
) =

44 > c(H)), we have g2

f
∈ I, whence I2 = fI. Hence, to see that I is an Ulrich ideal of

A, it suffices to show that I/(f) is a free A/I-module.

We now notice that k-space A/I is spanned by the images of the monomials {tq}
(0 ≤ q ≤ 38, q ̸= 33). Among them, there are relations

t10 + α1t
11 + α2t

16 + α3t
22 ≡ 0 mod I and t27 ≡ 0 mod I

induced by the vanishing of f, g mod I, which implies that the k-space A/I is actually

spanned by the images of the following five monomials

1, t5, t11, t16, t22

so that ℓA(A/I) ≤ 5, which is enough to guarantees that I/(f) is a free A/I-module. In

fact, the epimorphism

φ : A/I → I/(f), φ(1mod I) = g mod I

of A-modules must be an isomorphism, since

ℓA(I/(f)) = ℓA(A/(f))− ℓA(A/I) = 10− ℓA(A/I) ≥ 5.

Thus, I is an Ulich ideal of A.

The second assertion follows from the fact that the images of 1, t5, t11, t16, t22 form a

k-basis of A/I. □

5. The case where H = ⟨5, 11⟩ , (a, b) = (20, 26), and ch(k) = 2

We shall study the case where (a, b) = (20, 26). Our goal is the following.

Theorem 5.1. Let YA denote the set of Ulrich ideals of A which possess the data (a, b) =

(20, 26). Then

YA =
{
(t20 + 3εt21 + ε2t22 + (2τ − 55ε7)t27 + δt33, t26 + 2εt27 + τt33) | δ, ε, τ ∈ k, ε ̸= 0

}
.

The elements δ, ε, τ ∈ k in the expression of I ∈ YA are uniquely determined for each I.

Let us begin with the following.
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Lemma 5.2. Let α, β, γ, δ, ε, τ ∈ k and assume that ε ̸= α, β ̸= 0, and β ̸= ε(α− ε). Let

f = t20 + αt21 + βt22 + γt27 + δt33 and g = t26 + εt27 + τt33. We set I = (f, g). Then the

following assertions hold true.

(1) c = t40V ⊆ I and A/I ∼= I/(f) as an A-module.

(2) I is an Ulrich ideal of A if and only if g2 ∈ fI.

Proof. We set L = v(I). First of all, we will show that 45, 46, 47, 48, 49 ∈ L. It suffices to

see 38 ∈ L, since 45, 46, 47 ∈ L. Consider

t16f = t36 + αt37 + βt38 + γt43 + δt49

t10g = t36 + εt37 + τt43

t11g = t37 + εt38 + τt44

and we have

(∗) t10g − t16f = (ε− α) t37 − βt38 + (τ − γ)t43 − δt49 ∈ I

so that

(∗∗) (ε−α)·t11g− (t10g− t16f) = (ε(ε−α)+β)t38+(γ− τ)t43+ τ(ε−α)t44+ δt49 ∈ I.

Consequently, 38 ∈ L, since ε(ε−α) + β ̸= 0. Hence, 45, 46, 47, 48, 49 ∈ L, and t45V ⊆ I.

We now notice that

(∗ ∗ ∗1) t20f = t40 + αt41 + βt42 + γt47 + δt53

(∗ ∗ ∗2) t15g = t41 + εt42 + τt48

Then, since

(ε(ε− α) + β)t43 + (γ − τ)t48 + τ(ε− α)t49 + δt54 ∈ I

by (∗∗), we have (ε(ε− α) + β)t43 ∈ I, so that t43 ∈ I. Consequently, since

t5(t10g − t16f) = (ε− α) t42 − βt43 + (τ − γ)t48 − δt54 ∈ I

by (∗), we get

(ε− α)t42 ∈ I,

whence t42 ∈ I. Therefore t41, t40 ∈ I by (∗ ∗ ∗2) and (∗ ∗ ∗1). Similarly, considering

t22f − t16g, we have

(ε− α)t43 − βt44 ∈ I,

so that t44 ∈ I. Therefore, we have c = t40V ⊆ I. On the other hand, t38 ∈ I by (∗∗),
whence we get t37 ∈ I, considering t11g. Hence t36, t35 ∈ I, which come from the fact

t16f, t15f ∈ I. Therefore,

t35, t36, t37, t38 ∈ I,

which guarantees that the k-space A/I is spanned by the images of the monomials

1, t5, t10, t11, t15, t16, t20, t21, t22, t25, t26, t27, t30, t31, t32, t33
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0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

25 26 27 28 29

30 31 32 33 34

and among them we have the relations

f ≡ 0, t15f ≡ 0, t10f ≡ 0, g ≡ 0, t5g ≡ 0 mod I,

so that A/I is actually spanned by the images of the following eleven monomials

1, t5, t10, t11, t15, t16, t21, t22, t27, t32, t33.

We however one more relation

t5g − t11f ≡ (ε− α)t32 − βt33 ≡ 0 mod I,

so that ℓA(A/I) ≤ 10. Therefore, because ℓA(A/(f)) = 20, the epimorphim

φ : A/I → I/(f), φ(1 mod I) = g mod I

of A-modules is an isomorphism, and thus, A/I ∼= I/(f) as an A-module.

The second assertion is clear, since (f) is a reduction of I (notice that IV = fV ). □
Let I be an Ulrich ideal of A = k[[t5, t11]] and suppose that (a, b) = (20, 26). Thanks

to Proposition 4.2 (2), we may assume that

f = t20 + αt21 + βt22 + γt27 + δt33 and g = t26 + εt27 + τt33

for some α, β, γ, δ, ε, τ ∈ k, where we shall fix the present notation which is different from

the notation used in Proposition 4.2 (2), in order to avoid possible confusion about the

indices. We set ξ = g
f
, B = AI , and H1 = v(B). Then o(ξ) = 6, B = k[[t5, t11, ξ]], and

B = f−1I = A+Aξ. The numerical semigroup H1 is symmetric, since B is a Gorenstein

ring. Notice that ξ ̸∈ mB but ξ2 ∈ mB ([1, Lemma 3.2]), where m denotes the maximal

ideal of A.

We then have the following.

Proposition 5.3. H1 = ⟨5, 6⟩, B = k[[t5, ξ]], and t6 ̸∈ B. In particular, B is not the

semigroup ring for any numerical semigroup.

Proof. Since mBV = t5V , we have ⟨5, 6⟩ ⊆ H1 ⊆ ⟨5, 6, 7, 8, 9⟩, and m2
B = t5mB, where mB

denotes the maximal ideal of B. Hence, 7, 8, 9 ̸∈ H1. In fact, let q ∈ {7, 8, 9} and assume

q ∈ H1. Choose an element η ∈ B so that o(η) = q. We then have η = t5φ + t11ψ + ξρ

for some φ, ψ, ρ ∈ B, where φ, ρ ∈ mB because o(η) = q ≥ 7. Hence, o(t5φ) ≥ 10 and

o(ξρ) ≥ 11, which forces q = o(η) ≥ 10. This is absurd. Thus, 7, 8, 9 ̸∈ H1.
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Since ξ2 ∈ mB, we have

ξ2 = t5φ+ t6·t5ψ = t5(φ+ t6ψ)

with φ, ψ ∈ B. Hence, if t6 ∈ B, then o(φ+ t6ψ) = 7, so that 7 ∈ H1, which is impossible.

Hence t6 ̸∈ B, and B is not the semigroup ring for any numerical semigroup.

We set C = k[[t5, ξ]]. Then C ⊆ B and ⟨5, 6⟩ ⊆ v(C). Therefore, to see C = B, it

suffices to show H1 = ⟨5, 6⟩.
⟨5, 6⟩:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

Assume that H1 ⊋ ⟨5, 6⟩. Then, 19 ∈ H1, since the C-submodule V/C of Q(C)/C

contains a unique socle generated by the image of t19 (here Q(C) denotes the quotient

field of C) . We set D = k[[t5, t6, t19]].

⟨5, 6, 19⟩:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Then, because ⟨5, 6, 19⟩ is not symmetric, we have H1 ⊋ ⟨5, 6, 19⟩, whence 13 ∈ H1 or

14 ∈ H1, because the socle of the D-module V/D is spanned by the images of t13 and t14.

We claim 13 ̸∈ H1. In fact, suppose 13 ∈ H1. Then, H1 ⊋ ⟨5, 6, 13⟩ since ⟨5, 6, 13⟩ is not
symmetric, so that 14 ∈ H1, because the socle of the k[[t5, t6, t13]]-module V/k[[t5, t6, t13]]

is spanned by the images of t7 and t14 but 7 /∈ H1.

⟨5, 6, 13⟩:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

Therefore, H1 ⊇ ⟨5, 6, 13, 14⟩, whence H1 = ⟨5, 6, 13, 14⟩, because 7, 8, 9 ̸∈ H1.

⟨5, 6, 13, 14⟩:
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0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

This is impossible, since ⟨5, 6, 13, 14⟩ is not symmetric. Thus, 13 ̸∈ H1, so that 14 ∈ H1

and hence H1 = ⟨5, 6, 14⟩, because 7, 8, 9, 13 ̸∈ H1.

⟨5, 6, 14⟩:

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

This is, however, still impossible, since ⟨5, 6, 14⟩ is not symmetric. Thus, H1 = ⟨5, 6⟩ as
claimed. □

The following is the key in our argument.

Proposition 5.4. We have ε ̸= α, 3ε = 2α, and β = α2 − 2ε2.

Proof. Let

ξ = t6 + c7t
7 + c8t

8 + c9t
9 + · · ·

with ci ∈ k. We then have

c7 = ε− α, c8 = α2 − εα− β, c9 = 2αβ + εα2 − εβ − α3,

since g = fξ. Let us write ξ2 = t5φ+ t11ψ with φ, ψ ∈ B and let

φ =
∞∑
i=0

φit
i and ψ =

∞∑
i=0

ψit
i

with φi, ψi ∈ k. Then, comparing the coefficients of ti (5 ≤ i ≤ 14) in both sides of the

equation

(t6 + c7t
7 + c8t

8 + c9t
9 + · · · )2 = t5·

∞∑
i=0

φit
i + t11·

∞∑
i=0

ψit
i,

we have φi = 0 for all 0 ≤ i ≤ 5 and

φ6 + ψ0 = 0, φ7 = 1, φ8 = 2(ε− α), φ9 = ε2 − 4εα + 3α2 − 2β.

Hence

φ = φ6t
6 + t7 + 2(ε− α)t8 + (ε2 − 4εα + 3α2 − 2β)t9 + · · · .

We now compare φ with

φ6ξ = φ6t
6 + φ6(ε− α)t7 + φ6(α

2 − εα− β)t8 + φ6(2αβ + εα2 − εβ − α3)t9 + · · ·
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and considering the coefficients of ti (7 ≤ i ≤ 9) in the difference φ− φ6ξ, we get

1 = φ6·(ε−α), 2(ε−α) = φ6(α
2−εα−β), ε2−4εα+3α2−2β = φ6(2αβ+εα

2−εβ−α3)

because 7, 8, 9 ̸∈ H1 = ⟨5, 6⟩. The first two equalities imply that

ε ̸= α and β = −2ε2 + 3εα− α2,

and because

ε2 − 4εα + 3α2 − 2β =
1

ε− α
(2αβ + εα2 − εβ − α3),

we have

3ε3 − 8ε2α + 7εα2 − 2α3 = (ε− α)2(3ε− 2α) = 0.

Thus

3ε = 2α and β = −2ε2 + 3εα− α2 = α2 − 2ε2

as claimed. □

Theorem 5.5. If ch(k) = 2, then ε = 0, α ̸= 0, β = α2, and γ = α7.

Proof. It suffices to show that γ = α7. We choose elements φ =
∑∞

i=0 φit
i, ψ =

∑∞
i=0 ψit

i

of A where φi, ψi ∈ k, so that

(#) g2 = f 2φ+ fgψ.

Compare the coefficients of {ti}51≤i≤60 in both sides of Equation (#). Then, since g =

t26 + τt33, we get the following table.

Monomials Equation g2 = f 2φ+ fgψ Results
t51 0 = φ11 + ψ5

t52 1 = ψ5α ψ5 = φ11 =
1
α

t53 0 = φ11α
2 + α2ψ5

t54 0 = 0
t55 0 = φ15 + φ11α

4 φ15 = α3

t56 0 = φ16 + ψ10 ψ10 = φ16

t57 0 = φ15α
2 + ψ11 + ψ10α

t58 0 = φ16α
2 + αψ11 + α2ψ10 + ψ5(τ + γ) = αψ11 +

1
α
(τ + γ) ψ11 =

τ+γ
α2

t59 0 = α4φ15 + α2ψ11 + ταψ5 = α7 + α2· τ+γ
α2 + τα· 1

α
= α7 + γ γ = α7

t60 0 = ψ5βτ + φ20 + φ16β
2 φ20 + φ16β

2 = βτ
α

The third column of the table consists of the results of computation of the coefficients

φi, ψj and eventually shows γ = α7. □

We finish the case where ch(k) = 2.

Corollary 5.6. Let YA denote the set of Ulrich ideals of A which possess the data (a, b) =

(20, 26). Assume that ch(k) = 2. Then

YA = {(t20 + αt21 + α2t22 + α7t27 + δt33, t26 + τt33) | α, δ, τ ∈ k, α ̸= 0}.



ULRICH IDEALS IN THE RING k[[t5, t11]] 13

Proof. Let α, δ, τ ∈ k, α ̸= 0 and let f = t20 + αt21 + α2t22 + α7t27 + δt33, g = t26 + τt33.

We set I = (f, g). Thanks to Theorem 5.5, it suffices to show I ∈ XA. Since A/I ∼= I/(f)

by Lemma 5.2 (1), it is enough to show g2 ∈ (f 2, fg). Notice that the table (#) given in

the proof of Theorem 5.5 actually shows that if we set

φ =
1

α
t11 + α3t15 +

τ

α3
t16 and ψ =

1

α
t5 +

τ

α3
t10 +

τ + α7

α2
t11,

we then have

g2 ≡ f 2φ+ fgψ mod t60V,

which implies g2 ∈ fI, because t60V = fc and c ⊆ I by Lemma 5.2 (1). □

Example 5.7 (cf. Theorem 6.3). Let I = (t20 + t21 + t22 + t27, t26). Then I is an Ulrich

ideal of A if and only if ch(k) = 2.

Proof. It is enough to prove the only if part. Suppose that I is an Ulrich ideal of A and

consider ξ = g
f
= t26

t20+t21+t22+t27
. We then have

ξ = t6 − t7 + t9 − t10 + t12 − 2t13 + ρ

with o(ρ) ≥ 14. Therefore

g2

f
= gξ = t32 − t33 + t35 − t36 + t38 − 2t39 + t26ρ

which forces that −2 = 0, because gξ ∈ I and 39 ̸∈ H. Hence, ch(k) = 2. □

6. The case where H = ⟨5, 11⟩ , (a, b) = (20, 26), and ch(k) ̸= 2

Let α, β, γ, δ, ε, τ ∈ k and let

f = t20 + αt21 + βt22 + γt27 + δt33, g = t26 + εt27 + τt33.

We assume that g2 = f 2φ+ fgψ for some φ =
∑∞

i=0 φit
i, ψ =

∑∞
i=0 ψit

i ∈ A (φi, ψi ∈ k).

Then, comparing the coefficients of {ti}0≤i≤60 in both sides of the equation

g2 = f 2·
∞∑
i=0

φit
i + fg·

∞∑
i=0

ψit
i,

we have ψ0 = 0, φ0 = φ5 = φ10 = 0 and the following table (#).

Monomials Results
t51 0 = ψ5 + φ11

t52 1 = (ε+ α)ψ5 + 2αφ11 = (ε− α)ψ5

t53 2ε = ψ5(εα+ β) + φ11(2β + α2) = ψ5(εα− β − α2)
t54 ε2 = ψ5·εβ + 2φ11αβ = ψ5β(ε− 2α)
t55 0 = φ15 + φ11β

2

t56 0 = φ16 + φ15·2α+ ψ10

t57 0 = ψ11 + ψ10(ε+ α) + φ16·2α+ φ15(α
2 + 2β)

t58 0 = ψ11(ε+ α) + ψ10(αε+ β) + ψ5(τ + γ) + φ16(α
2 + 2β) + 2αβφ15 + 2γφ11

t59 2τ = ψ11(αε+ β) + ψ10βε+ ψ5(εγ + ατ) + φ16·2αβ + φ15β
2 + φ11·2αγ

t60 2ετ = βεψ11 + φ5·βτ + φ20 + φ16β
2 + 2βγ·φ11

Hence, we have the following.

Lemma 6.1. ε ̸= α, ψ5 =
1

ε−α
, ψ5(εα− β − α2) = 2ε, and ψ5β(ε− 2α) = ε2.
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We now furthermore assume that ch(k) ̸= 2 and that ε ̸= α, 3ε = 2α, and β = α2−2ε2.

We then have ε ̸= 0, α = 3
2
ε, and β = 1

4
ε2. Therefore, thanks to the table (#), we see

φ11 = −ψ5 =
2

ε

φ15 = −1

8
ε3

φ16 =
3

8
ε4 − ψ10

ψ11 =
1

2
εψ10 −

25

32
ε5

where the last equality follows from the comparison of the coefficients of t57. Hence,

considering the coefficients of t58, we get

2

ε
(τ − γ) =

1

4
ε2ψ10 −

65

64
ε6,

while we have by the coefficients of t59 that

5τ − 4γ = ψ10·
3

8
ε3 − 35

32
ε7.

Therefore, we get the following.

Proposition 6.2. Assume that ch(k) ̸= 2 and that ε ̸= α, 3ε = 2α, β = α2 − 2ε2. Then

we have

γ = 2τ − 55

128
ε7, ψ10 =

15

2
ε4 − 8τ

ε3
.

Hence, ψ11 =
95
32
ε5 − 4τ

ε2
, φ16 = −57

8
ε4 + 8τ

ε3
, and φ20 = ετ + 17

128
ε8.

We are now ready to finish the case where ch(k) ̸= 2. Our conclusion is the following.

Theorem 6.3. Let YA denote the set of Ulrich ideals of A which possess the data (a, b) =
(20, 26). Assume that ch(k) ̸= 2. Then

YA =

{(
t20 +

3

2
εt21 +

1

4
ε2t22 + (2τ − 55

128
ε7)t27 + δt33, t26 + εt27 + τt33

) ∣∣∣∣∣ δ, ε, τ ∈ k, ε ̸= 0

}
.

Proof. Let α, β, γ, δ, ε, τ ∈ k and let

f = t20 + αt21 + βt22 + γt27 + δt33, g = t26 + εt27 + τt33.

If (f, g) is an Ulrich ideal of A, then by Proposition 5.4 we have ε ̸= α, 3ε = 2α and

β = α2 − 2ε2. Therefore, it follows from Proposition 6.2 that γ = 2τ − 55
128
ε7, because

ch(k) ̸= 2.

Conversely, let I = (f, g) where f = t20 + 3
2
εt21 + 1

4
ε2t22 + (2τ − 55

128
ε7)t27 + δt33 and

g = t26 + εt27 + τt33 with δ, ε, τ ∈ k. Let

φ =
2

ε
t11 − 1

8
ε3t15 +

(
8τ

ε3
− 57

8
ε4
)
t16 +

(
ετ +

17

128
ε3
)
t20,

ψ = −2

ε
t5 +

(
15

2
ε4 − 8τ

ε3

)
t10 +

(
95

32
ε5 − 4τ

ε2

)
t11.
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Then the table (#) shows that

g2 ≡ f 2φ+ fgψ mod t61V.

On the other hand, by Lemma 5.2 (1) we have c = t40V ⊆ I. Hence, t60V = fc ⊆ fI,

so that g2 ∈ (f 2, fg). Thus, I is an Ulrich ideal of A by Lemma 5.2. This completes the

proof of the case where ch(k) ̸= 2. □
Let us give a brief note about the proof of Theorem 5.1.

Proof of Theorem 5.1. Thanks to Corollary 5.6, we may assume that ch(k) ̸= 2. Let

α, β, γ, δ, ε, τ ∈ k such that

(C1) ε ̸= α, 3ε = 2α, β = α2 − 2ε2, γ = 2τ − 55

128
ε7.

Then, setting ε′ = 1
2
ε, we have ε′ ̸= 0 and

(C2) ε = 2ε′, α = 3ε′, β = ε′
2
, γ = 2τ − 55ε′

7
.

It is certain that once we choose δ, ε′, τ ∈ k so that ε′ ̸= 0 and set ε, α, β, γ like Condition

(C2), the elements α, β, γ, δ, ε, τ ∈ k satisfy Condition (C1) required in Theorem 6.3, and

therefore (t20 + 3ε′t21 + ε′2t22 + (2τ − 55ε′7)t27 + δt33, t26 + 2ε′t27 + τt33) ∈ XA.

Let us check the second assertion. Let

f = t20 + 3εt21 + ε2t22 + (2τ − 55ε7)t27 + δt33,

g = t26 + 2εt27 + τt33,

f1 = t20 + 3ε1t
21 + ε1

2t22 + (2τ1 − 55ε1
7)t27 + δ1t

33,

g1 = t26 + 2ε1t
27 + τ1t

33.

where δ, ε, τ, δ1, ε1, τ1 ∈ k such that ε ̸= 0, ε1 ̸= 0, and assume that I = (f, g) = (f1, g1).

We then have

3(ε− ε1)t
21 + (ε2 − ε1

2)t22 +
{
2(τ − τ1)− 55(ε7 − ε1

7)
}
t27 + (δ − δ1)t

33, 2(ε− ε1)t
27 + (τ − τ1)t

33 ∈ I.

Therefore, since the images of t21, t22, t27, t33 form a part of a k-basis of A/I as is shown

in the proof of Lemma 5.2, we readily get δ = δ1, τ = τ1. We have ε = ε1, because

3(ε− ε1) = 2(ε− ε1) = 0. This finishes the proof of Theorem 5.1. □

Corollary 6.4 ([4]). The ring A contains no Ulrich ideals generated by monomials in t.

Corollary 6.5. Let f = t20+3t21+t22+γt27+δt33 and g = t26+2t27+τt33 with γ, δ, τ ∈ k

such that γ = 2τ − 55. Then, I = (f, g) is an Ulrich ideal of A in any characteristic.

Corollary 6.6. Suppose that ch(k) = 3 and let f = t20 + ε2t22 + γt27 + δt33 and g =

t26 + εt27 + τt33 with ε, γ, δ ∈ k such that ε ̸= 0 and γ = 2τ + ε7. Then I = (f, g) is an

Ulrich ideal of A. In particular, (t20 + t22, t26 + t27 + t33) ∈ XA.
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